Levai's Gear Configuration 8

Here,

*f = 2*

*a = 1*

*l = 5*

from which, we get

(1)\begin{align} \frac {\omega_{5/1}}{\omega_{2/1}}& =\frac {\omega_5-\omega_1}{\omega_2-\omega_1}\\ \end{align}

(2)
\begin{split} \frac {\omega_{5/1}}{\omega_{2/1}}& =\left(\frac {N_2}{N_3}\right)\left(\frac {N_4}{N_5}\right)\\ \end{split}

therefore from (1) and the expression above, we get

(3)\begin{align} \omega_5 & =\left(\frac {N_2*N_4}{N_3*N_5}\right)\left(\omega_2 - \omega_1\right) + \omega_1\\ \end{align}

This is the angular velocity of the *Ring gear* in terms of the angular velocity of the *Arm* and the angular velocity of the other *Ring gear* for the configuration shown.

page revision: 7, last edited: 15 Sep 2010 04:54