Levai's Gear Configuration 8
flickr:4977325249

Here,

f = 2
a = 1
l = 5

from which, we get

(1)
\begin{align} \frac {\omega_{5/1}}{\omega_{2/1}}& =\frac {\omega_5-\omega_1}{\omega_2-\omega_1}\\ \end{align}
(2)
\begin{split} \frac {\omega_{5/1}}{\omega_{2/1}}& =\left(\frac {N_2}{N_3}\right)\left(\frac {N_4}{N_5}\right)\\ \end{split}

therefore from (1) and the expression above, we get

(3)
\begin{align} \omega_5 & =\left(\frac {N_2*N_4}{N_3*N_5}\right)\left(\omega_2 - \omega_1\right) + \omega_1\\ \end{align}

This is the angular velocity of the Ring gear in terms of the angular velocity of the Arm and the angular velocity of the other Ring gear for the configuration shown.